1000000000x^2+35x-3.5=0

Simple and best practice solution for 1000000000x^2+35x-3.5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1000000000x^2+35x-3.5=0 equation:


Simplifying
1000000000x2 + 35x + -3.5 = 0

Reorder the terms:
-3.5 + 35x + 1000000000x2 = 0

Solving
-3.5 + 35x + 1000000000x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
1000000000 the coefficient of the squared term: 

Divide each side by '1000000000'.
-0.0000000035 + 0.000000035x + x2 = 0

Move the constant term to the right:

Add '0.0000000035' to each side of the equation.
-0.0000000035 + 0.000000035x + 0.0000000035 + x2 = 0 + 0.0000000035

Reorder the terms:
-0.0000000035 + 0.0000000035 + 0.000000035x + x2 = 0 + 0.0000000035

Combine like terms: -0.0000000035 + 0.0000000035 = 0.0000000000
0.0000000000 + 0.000000035x + x2 = 0 + 0.0000000035
0.000000035x + x2 = 0 + 0.0000000035

Combine like terms: 0 + 0.0000000035 = 0.0000000035
0.000000035x + x2 = 0.0000000035

The x term is 0.000000035x.  Take half its coefficient (0.0000000175).
Square it (0.00000000000000030625) and add it to both sides.

Add '0.00000000000000030625' to each side of the equation.
0.000000035x + 0.00000000000000030625 + x2 = 0.0000000035 + 0.00000000000000030625

Reorder the terms:
0.00000000000000030625 + 0.000000035x + x2 = 0.0000000035 + 0.00000000000000030625

Combine like terms: 0.0000000035 + 0.00000000000000030625 = 0.00000000350000030625
0.00000000000000030625 + 0.000000035x + x2 = 0.00000000350000030625

Factor a perfect square on the left side:
(x + 0.0000000175)(x + 0.0000000175) = 0.00000000350000030625

Calculate the square root of the right side: 0.000059161

Break this problem into two subproblems by setting 
(x + 0.0000000175) equal to 0.000059161 and -0.000059161.

Subproblem 1

x + 0.0000000175 = 0.000059161 Simplifying x + 0.0000000175 = 0.000059161 Reorder the terms: 0.0000000175 + x = 0.000059161 Solving 0.0000000175 + x = 0.000059161 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.0000000175' to each side of the equation. 0.0000000175 + -0.0000000175 + x = 0.000059161 + -0.0000000175 Combine like terms: 0.0000000175 + -0.0000000175 = 0.0000000000 0.0000000000 + x = 0.000059161 + -0.0000000175 x = 0.000059161 + -0.0000000175 Combine like terms: 0.000059161 + -0.0000000175 = 0.0000591435 x = 0.0000591435 Simplifying x = 0.0000591435

Subproblem 2

x + 0.0000000175 = -0.000059161 Simplifying x + 0.0000000175 = -0.000059161 Reorder the terms: 0.0000000175 + x = -0.000059161 Solving 0.0000000175 + x = -0.000059161 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.0000000175' to each side of the equation. 0.0000000175 + -0.0000000175 + x = -0.000059161 + -0.0000000175 Combine like terms: 0.0000000175 + -0.0000000175 = 0.0000000000 0.0000000000 + x = -0.000059161 + -0.0000000175 x = -0.000059161 + -0.0000000175 Combine like terms: -0.000059161 + -0.0000000175 = -0.0000591785 x = -0.0000591785 Simplifying x = -0.0000591785

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.0000591435, -0.0000591785}

See similar equations:

| 4(5-x)+(7+x)=47 | | 3z=-2z+15 | | 7(x-2)/6=-2x | | 14x+5x-6y-3y= | | 3z=-2x+15 | | 4x(x-5)+(7+x)=47 | | 8m+3n-2n-6m= | | 5-10(-3)= | | 10.80/13.50 | | 7.17=2(3.14)*r | | 9.2/8.4 | | (2x^2-11x+12)=0 | | 20+-4x+7+x=47 | | 140/420 | | 12/120 | | (10000000)(x^2)+13x-1.3=0 | | (10p^2+11p-8)=0 | | A=1/2*29*40 | | (P+1)(10p^2+11p-8)=0 | | 20(.44+.17)=15.60 | | 4(5-x)=47 | | 30/120 | | 10p^2(p+1)=8(p+1)-11p(p+1) | | 60/33 | | 8s+5y+11x-2y= | | 2=-3+6x | | (7+x)=47 | | 3k+3=33 | | 712.05=47(x+2.15) | | 3(t-4)+7t=5(2t+3)-13 | | 4(x-5)=47 | | 5.08/9.00 |

Equations solver categories